\(\int \frac {(a+b \tan (e+f x))^m}{(c+d \tan (e+f x))^2} \, dx\) [1310]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 301 \[ \int \frac {(a+b \tan (e+f x))^m}{(c+d \tan (e+f x))^2} \, dx=\frac {\operatorname {Hypergeometric2F1}\left (1,1+m,2+m,\frac {a+b \tan (e+f x)}{a-i b}\right ) (a+b \tan (e+f x))^{1+m}}{2 (i a+b) (c-i d)^2 f (1+m)}-\frac {\operatorname {Hypergeometric2F1}\left (1,1+m,2+m,\frac {a+b \tan (e+f x)}{a+i b}\right ) (a+b \tan (e+f x))^{1+m}}{2 (i a-b) (c+i d)^2 f (1+m)}-\frac {d^2 \left (2 a c d-b \left (c^2 (2-m)-d^2 m\right )\right ) \operatorname {Hypergeometric2F1}\left (1,1+m,2+m,-\frac {d (a+b \tan (e+f x))}{b c-a d}\right ) (a+b \tan (e+f x))^{1+m}}{(b c-a d)^2 \left (c^2+d^2\right )^2 f (1+m)}+\frac {d^2 (a+b \tan (e+f x))^{1+m}}{(b c-a d) \left (c^2+d^2\right ) f (c+d \tan (e+f x))} \]

[Out]

1/2*hypergeom([1, 1+m],[2+m],(a+b*tan(f*x+e))/(a-I*b))*(a+b*tan(f*x+e))^(1+m)/(I*a+b)/(c-I*d)^2/f/(1+m)-1/2*hy
pergeom([1, 1+m],[2+m],(a+b*tan(f*x+e))/(a+I*b))*(a+b*tan(f*x+e))^(1+m)/(I*a-b)/(c+I*d)^2/f/(1+m)-d^2*(2*a*c*d
-b*(c^2*(2-m)-d^2*m))*hypergeom([1, 1+m],[2+m],-d*(a+b*tan(f*x+e))/(-a*d+b*c))*(a+b*tan(f*x+e))^(1+m)/(-a*d+b*
c)^2/(c^2+d^2)^2/f/(1+m)+d^2*(a+b*tan(f*x+e))^(1+m)/(-a*d+b*c)/(c^2+d^2)/f/(c+d*tan(f*x+e))

Rubi [A] (verified)

Time = 0.96 (sec) , antiderivative size = 299, normalized size of antiderivative = 0.99, number of steps used = 9, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {3650, 3734, 3620, 3618, 70, 3715} \[ \int \frac {(a+b \tan (e+f x))^m}{(c+d \tan (e+f x))^2} \, dx=-\frac {d^2 \left (2 a c d-b c^2 (2-m)+b d^2 m\right ) (a+b \tan (e+f x))^{m+1} \operatorname {Hypergeometric2F1}\left (1,m+1,m+2,-\frac {d (a+b \tan (e+f x))}{b c-a d}\right )}{f (m+1) \left (c^2+d^2\right )^2 (b c-a d)^2}+\frac {d^2 (a+b \tan (e+f x))^{m+1}}{f \left (c^2+d^2\right ) (b c-a d) (c+d \tan (e+f x))}+\frac {(a+b \tan (e+f x))^{m+1} \operatorname {Hypergeometric2F1}\left (1,m+1,m+2,\frac {a+b \tan (e+f x)}{a-i b}\right )}{2 f (m+1) (b+i a) (c-i d)^2}-\frac {(a+b \tan (e+f x))^{m+1} \operatorname {Hypergeometric2F1}\left (1,m+1,m+2,\frac {a+b \tan (e+f x)}{a+i b}\right )}{2 f (m+1) (-b+i a) (c+i d)^2} \]

[In]

Int[(a + b*Tan[e + f*x])^m/(c + d*Tan[e + f*x])^2,x]

[Out]

(Hypergeometric2F1[1, 1 + m, 2 + m, (a + b*Tan[e + f*x])/(a - I*b)]*(a + b*Tan[e + f*x])^(1 + m))/(2*(I*a + b)
*(c - I*d)^2*f*(1 + m)) - (Hypergeometric2F1[1, 1 + m, 2 + m, (a + b*Tan[e + f*x])/(a + I*b)]*(a + b*Tan[e + f
*x])^(1 + m))/(2*(I*a - b)*(c + I*d)^2*f*(1 + m)) - (d^2*(2*a*c*d - b*c^2*(2 - m) + b*d^2*m)*Hypergeometric2F1
[1, 1 + m, 2 + m, -((d*(a + b*Tan[e + f*x]))/(b*c - a*d))]*(a + b*Tan[e + f*x])^(1 + m))/((b*c - a*d)^2*(c^2 +
 d^2)^2*f*(1 + m)) + (d^2*(a + b*Tan[e + f*x])^(1 + m))/((b*c - a*d)*(c^2 + d^2)*f*(c + d*Tan[e + f*x]))

Rule 70

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(b*c - a*d)^n*((a + b*x)^(m + 1)/(b^(
n + 1)*(m + 1)))*Hypergeometric2F1[-n, m + 1, m + 2, (-d)*((a + b*x)/(b*c - a*d))], x] /; FreeQ[{a, b, c, d, m
}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] && IntegerQ[n]

Rule 3618

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c*(
d/f), Subst[Int[(a + (b/d)*x)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 3620

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3650

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[b^2*(a + b*Tan[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(a^2 + b^2)*(b*c - a*d))), x] + D
ist[1/((m + 1)*(a^2 + b^2)*(b*c - a*d)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[a*(b*c -
 a*d)*(m + 1) - b^2*d*(m + n + 2) - b*(b*c - a*d)*(m + 1)*Tan[e + f*x] - b^2*d*(m + n + 2)*Tan[e + f*x]^2, x],
 x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && I
ntegerQ[2*m] && LtQ[m, -1] && (LtQ[n, 0] || IntegerQ[m]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] &&
NeQ[a, 0])))

Rule 3715

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rule 3734

Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(a^2 + b^2), Int[(c + d*Tan[e + f*
x])^n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Dist[(A*b^2 - a*b*B + a^2*C)/(a^2 +
b^2), Int[(c + d*Tan[e + f*x])^n*((1 + Tan[e + f*x]^2)/(a + b*Tan[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e,
f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !GtQ[n, 0] &&  !LeQ[n, -
1]

Rubi steps \begin{align*} \text {integral}& = \frac {d^2 (a+b \tan (e+f x))^{1+m}}{(b c-a d) \left (c^2+d^2\right ) f (c+d \tan (e+f x))}+\frac {\int \frac {(a+b \tan (e+f x))^m \left (-a c d+b \left (c^2-d^2 m\right )-d (b c-a d) \tan (e+f x)-b d^2 m \tan ^2(e+f x)\right )}{c+d \tan (e+f x)} \, dx}{(b c-a d) \left (c^2+d^2\right )} \\ & = \frac {d^2 (a+b \tan (e+f x))^{1+m}}{(b c-a d) \left (c^2+d^2\right ) f (c+d \tan (e+f x))}+\frac {\int (a+b \tan (e+f x))^m \left ((b c-a d) \left (c^2-d^2\right )-2 c d (b c-a d) \tan (e+f x)\right ) \, dx}{(b c-a d) \left (c^2+d^2\right )^2}-\frac {\left (d^2 \left (2 a c d-b c^2 (2-m)+b d^2 m\right )\right ) \int \frac {(a+b \tan (e+f x))^m \left (1+\tan ^2(e+f x)\right )}{c+d \tan (e+f x)} \, dx}{(b c-a d) \left (c^2+d^2\right )^2} \\ & = \frac {d^2 (a+b \tan (e+f x))^{1+m}}{(b c-a d) \left (c^2+d^2\right ) f (c+d \tan (e+f x))}+\frac {\int (1+i \tan (e+f x)) (a+b \tan (e+f x))^m \, dx}{2 (c-i d)^2}+\frac {\int (1-i \tan (e+f x)) (a+b \tan (e+f x))^m \, dx}{2 (c+i d)^2}-\frac {\left (d^2 \left (2 a c d-b c^2 (2-m)+b d^2 m\right )\right ) \text {Subst}\left (\int \frac {(a+b x)^m}{c+d x} \, dx,x,\tan (e+f x)\right )}{(b c-a d) \left (c^2+d^2\right )^2 f} \\ & = -\frac {d^2 \left (2 a c d-b c^2 (2-m)+b d^2 m\right ) \operatorname {Hypergeometric2F1}\left (1,1+m,2+m,-\frac {d (a+b \tan (e+f x))}{b c-a d}\right ) (a+b \tan (e+f x))^{1+m}}{(b c-a d)^2 \left (c^2+d^2\right )^2 f (1+m)}+\frac {d^2 (a+b \tan (e+f x))^{1+m}}{(b c-a d) \left (c^2+d^2\right ) f (c+d \tan (e+f x))}+\frac {i \text {Subst}\left (\int \frac {(a-i b x)^m}{-1+x} \, dx,x,i \tan (e+f x)\right )}{2 (c-i d)^2 f}-\frac {i \text {Subst}\left (\int \frac {(a+i b x)^m}{-1+x} \, dx,x,-i \tan (e+f x)\right )}{2 (c+i d)^2 f} \\ & = \frac {\operatorname {Hypergeometric2F1}\left (1,1+m,2+m,\frac {a+b \tan (e+f x)}{a-i b}\right ) (a+b \tan (e+f x))^{1+m}}{2 (i a+b) (c-i d)^2 f (1+m)}-\frac {\operatorname {Hypergeometric2F1}\left (1,1+m,2+m,\frac {a+b \tan (e+f x)}{a+i b}\right ) (a+b \tan (e+f x))^{1+m}}{2 (i a-b) (c+i d)^2 f (1+m)}-\frac {d^2 \left (2 a c d-b c^2 (2-m)+b d^2 m\right ) \operatorname {Hypergeometric2F1}\left (1,1+m,2+m,-\frac {d (a+b \tan (e+f x))}{b c-a d}\right ) (a+b \tan (e+f x))^{1+m}}{(b c-a d)^2 \left (c^2+d^2\right )^2 f (1+m)}+\frac {d^2 (a+b \tan (e+f x))^{1+m}}{(b c-a d) \left (c^2+d^2\right ) f (c+d \tan (e+f x))} \\ \end{align*}

Mathematica [A] (verified)

Time = 4.52 (sec) , antiderivative size = 266, normalized size of antiderivative = 0.88 \[ \int \frac {(a+b \tan (e+f x))^m}{(c+d \tan (e+f x))^2} \, dx=\frac {(a+b \tan (e+f x))^{1+m} \left (-\frac {i \left (\frac {(c+i d)^2 (-b c+a d) \operatorname {Hypergeometric2F1}\left (1,1+m,2+m,\frac {a+b \tan (e+f x)}{a-i b}\right )}{a-i b}+\frac {(c-i d)^2 (b c-a d) \operatorname {Hypergeometric2F1}\left (1,1+m,2+m,\frac {a+b \tan (e+f x)}{a+i b}\right )}{a+i b}\right )}{\left (c^2+d^2\right ) (1+m)}-\frac {2 d^2 \left (2 a c d+b c^2 (-2+m)+b d^2 m\right ) \operatorname {Hypergeometric2F1}\left (1,1+m,2+m,\frac {d (a+b \tan (e+f x))}{-b c+a d}\right )}{(-b c+a d) \left (c^2+d^2\right ) (1+m)}-\frac {2 d^2}{c+d \tan (e+f x)}\right )}{2 (-b c+a d) \left (c^2+d^2\right ) f} \]

[In]

Integrate[(a + b*Tan[e + f*x])^m/(c + d*Tan[e + f*x])^2,x]

[Out]

((a + b*Tan[e + f*x])^(1 + m)*(((-I)*(((c + I*d)^2*(-(b*c) + a*d)*Hypergeometric2F1[1, 1 + m, 2 + m, (a + b*Ta
n[e + f*x])/(a - I*b)])/(a - I*b) + ((c - I*d)^2*(b*c - a*d)*Hypergeometric2F1[1, 1 + m, 2 + m, (a + b*Tan[e +
 f*x])/(a + I*b)])/(a + I*b)))/((c^2 + d^2)*(1 + m)) - (2*d^2*(2*a*c*d + b*c^2*(-2 + m) + b*d^2*m)*Hypergeomet
ric2F1[1, 1 + m, 2 + m, (d*(a + b*Tan[e + f*x]))/(-(b*c) + a*d)])/((-(b*c) + a*d)*(c^2 + d^2)*(1 + m)) - (2*d^
2)/(c + d*Tan[e + f*x])))/(2*(-(b*c) + a*d)*(c^2 + d^2)*f)

Maple [F]

\[\int \frac {\left (a +b \tan \left (f x +e \right )\right )^{m}}{\left (c +d \tan \left (f x +e \right )\right )^{2}}d x\]

[In]

int((a+b*tan(f*x+e))^m/(c+d*tan(f*x+e))^2,x)

[Out]

int((a+b*tan(f*x+e))^m/(c+d*tan(f*x+e))^2,x)

Fricas [F]

\[ \int \frac {(a+b \tan (e+f x))^m}{(c+d \tan (e+f x))^2} \, dx=\int { \frac {{\left (b \tan \left (f x + e\right ) + a\right )}^{m}}{{\left (d \tan \left (f x + e\right ) + c\right )}^{2}} \,d x } \]

[In]

integrate((a+b*tan(f*x+e))^m/(c+d*tan(f*x+e))^2,x, algorithm="fricas")

[Out]

integral((b*tan(f*x + e) + a)^m/(d^2*tan(f*x + e)^2 + 2*c*d*tan(f*x + e) + c^2), x)

Sympy [F]

\[ \int \frac {(a+b \tan (e+f x))^m}{(c+d \tan (e+f x))^2} \, dx=\int \frac {\left (a + b \tan {\left (e + f x \right )}\right )^{m}}{\left (c + d \tan {\left (e + f x \right )}\right )^{2}}\, dx \]

[In]

integrate((a+b*tan(f*x+e))**m/(c+d*tan(f*x+e))**2,x)

[Out]

Integral((a + b*tan(e + f*x))**m/(c + d*tan(e + f*x))**2, x)

Maxima [F]

\[ \int \frac {(a+b \tan (e+f x))^m}{(c+d \tan (e+f x))^2} \, dx=\int { \frac {{\left (b \tan \left (f x + e\right ) + a\right )}^{m}}{{\left (d \tan \left (f x + e\right ) + c\right )}^{2}} \,d x } \]

[In]

integrate((a+b*tan(f*x+e))^m/(c+d*tan(f*x+e))^2,x, algorithm="maxima")

[Out]

integrate((b*tan(f*x + e) + a)^m/(d*tan(f*x + e) + c)^2, x)

Giac [F]

\[ \int \frac {(a+b \tan (e+f x))^m}{(c+d \tan (e+f x))^2} \, dx=\int { \frac {{\left (b \tan \left (f x + e\right ) + a\right )}^{m}}{{\left (d \tan \left (f x + e\right ) + c\right )}^{2}} \,d x } \]

[In]

integrate((a+b*tan(f*x+e))^m/(c+d*tan(f*x+e))^2,x, algorithm="giac")

[Out]

integrate((b*tan(f*x + e) + a)^m/(d*tan(f*x + e) + c)^2, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \tan (e+f x))^m}{(c+d \tan (e+f x))^2} \, dx=\int \frac {{\left (a+b\,\mathrm {tan}\left (e+f\,x\right )\right )}^m}{{\left (c+d\,\mathrm {tan}\left (e+f\,x\right )\right )}^2} \,d x \]

[In]

int((a + b*tan(e + f*x))^m/(c + d*tan(e + f*x))^2,x)

[Out]

int((a + b*tan(e + f*x))^m/(c + d*tan(e + f*x))^2, x)